Ug Papers
  • Home
  • Universities
  • Share Files
  • File Upload
  • Telegram
Join our Telegram channel and Discuss group. Thanks for the people who uploaded the question papers.

Au Degree 6th Sem Maths (2019) Question Paper

By Venkat | February 20, 2020
Andhra University 6th Semester Maths Common Question Paper of the year 2019 is available here. Have a look at it.
You may like
  • Maths VII-A - 2020
  • Maths VII-A -2021 (app)
Year - 2019
[BS-S 3201/BA-S 3201]
B.Sc. (CBCS) DEGREE EXAMINATION.
Sixth Semester
Mathematics
Paper VII (A) — Elective-VII (A) — LAPLACE TRANSFORMS
(Common for B.A. and B.Sc.)
(With Effective From 2015-2016 admitted batch)
Time: Three hours        Maximum: 75 marks
PART A — (5 x 5 = 25 marks)
Answer any FIVE from the following Fight questions.
1. State and prove the existence theorem of Laplace transforms.
లాప్లాస్ రూపాంతరము యొక్క అస్థిత్వ సిదాంతమును ప్రవచించి, దానిని నిరూపించండి.
2. Find the Laplace transform of F(t) where
Au 6th sem maths model papers, maths equations, au 6th sem maths common papers, ug papers, au old question papers, au previous question papers.

Au 6th sem maths model papers, maths equations, au 6th sem maths common papers, ug papers, au old question papers, au previous question papers.



అనే ప్రమేయం F(t) యొక్క లాప్లాస్ రూపాంతరమును కనుక్కోండి.
3. Show that L{F(n) (t)}= pn L{F(t)}- r=0∑n-1 pn-1-r F(r) (0) where F(n) (t) is the nth order derivative of F(t).
F(t) యొక్క n-వ పరిమాణ అవకలని F(n) (t) అయినప్పుడుL{F(n) (t)}= pn L{F(t)}- r=0∑n-1 pn-1-r F(r) (0).
4. If L{F(t)} = f(p), then show that L{(1/t)F(t)} =  p∫∞ f(x) dx, provided Limt→0 ∫(1/t)F(t) exists.
L{F(t)}=f(p)అవుతూ, Limt→0 ∫(1/t)F(t) వ్యవస్టితం అయినప్పుడు L{(1/t)F(t)} =  p∫∞ f(x) dx అని చూపండి.
5. Evaluate L(t2 cos at).
L(t2 cos at) ని గణన చెయండి.
6. Find L-1 6/(2p-3) - (3-4p)/(3p2 -16) - (8-6p)/(16p2 +9)}.
L-1 6/(2p-3) - (3-4p)/(3p2 -16) - (8-6p)/(16p2 +9)} ను కనుక్కోండి.
7, If L-1 f(p)}=F(t), then show L-1 f(ap)}=(1/a)F(t/a).
L-1 f(p)}=F(t) అయితే L-1 f(ap)}=(1/a)F(t/a) అని చూపండి.
8. Evaluate L-1 1/p(p+1)3 }.
L-1 1/p(p+1)3 } ని గణన చెయండి.
PART B — (5 x 10 = 50 marks)
Answer the following (ONE question from each Unit).
9. (a) Show that the Laplace transform of the function F(t)= tn ,-l<n<0 exists, although it is not a function of class A.
అది తరగతి & కి చెందే ప్రమేయం కానప్పటికీ, F(t)= tn ,-l<n<0ప్రమేయం యుక్క రూపాంతరం వ్యవస్టితం అవుతుందని చూపండి.
            Or
(b) (i) Show that L(1/√𝝅t) = 1/√p.
 L(1/√𝝅t) = 1/√p అని చూపండి.
(ii) Find L(tn ); n is a positive integer.
n ఒక ధన వూర్జాంకం అయినప్పుడు L(tn ) ని కనుక్కోండి.
10. (a) Let F(t) be continuous for all t≥0 and be of exponential order a as t→∞. If F'(t) is of class A, then show that L{F’(t)} exists when p>a and L{F'(t)}= p L{F(t)}— F(0).
అన్ని t≥0 లకు F(t) అవిచ్చిన్నము మరియు t→∞ కి ఘాతిక పరిమాణం a అనుకొందాం. F(t) తరగతి A కి చెందినదైైతేే p>a అయినప్పుడు, L{F’(t)} వ్యవస్థితం L{F'(t)}= p L{F(t)}- F(0) అని చూపండి..
            Or
(b) (i) If L{F(t)}=(i/p)e1-/p , find L{e-t F(3t)}.
L{F(t)}=(i/p)e1-/p  అయితే L{e-t F(3t)} ని కనుక్కోండి.
(ii) If J0(t) = r=0∑∞ [(-1)r /(r!)2](t/2)2r , find L{J0(t)}.
J0(t) = r=0∑∞ [(-1)r /(r!)2](t/2)2r అయితే L{J0(t)} ను కనుక్కోండి.
11 (a) Prove that L{sinat/t}= tan-1 (1/p) and hence find L{sinat/t}. Verify whether L{cosat/t} exist or not.
L{sinat/t}= tan-1 (1/p) అని నిరూపించండి. తద్వారా  L{sinat/t} ని కనుక్కోండి.  L{cosat/t}వ్యవస్థితమోకాదో సరిమాడండి.
            Or
(b) Find L{erf √t} and hence evaluate L{erf 2√t}.
L{erf √t} ని కనుక్కోండి. తద్వారా L{erf 2√t} ని గణన చేయండి.
12 (a) Show that
Au 6th sem maths model papers, maths equations, au 6th sem maths common papers, ug papers, au old question papers, au previous question papers.
Au 6th sem maths model papers, maths equations, au 6th sem maths common papers, ug papers, au old question papers, au previous question papers.


అని చూపండి.
            Or

(b) Evaluate
Au 6th sem maths model papers, maths equations, au 6th sem maths common papers, ug papers, au old question papers, au previous question papers.

au 6th sem maths model paperAu 6th sem maths model papers, maths equations, au 6th sem maths common papers, ug papers, au old question papers, au previous question papers.


లను గణన చేయండి.

13. (a) State and prove the Convolution theorem for Laplace transforms.
 లాష్లాస్‌ రూపాంతరములకు అంతర సిద్దాంతాన్ని ప్రవచించి, దానిని నిరూపించండి.
            Or
(b) State the Heaviside expansion theorem. Using this theorem, find
Au 6th sem maths model papers, maths equations, au 6th sem maths common papers, ug papers, au old question papers, au previous question papers.




హెవిసైడ్‌ విస్తరణ సిద్దాంతాన్ని ప్రవచించండి. ఈ సద్దాంతాన్ని ఉపయోగించి
au 6th sem maths model paperAu 6th sem maths model papers, maths equations, au 6th sem maths common papers, ug papers, au old question papers, au previous question papers.



ని కనుక్కోండి.
Related
  • AU Degree 6th Sem Question Papers.
  • AU Degree 4th Sem Question Papers.
  • AU Degree 2nd Sem Question Papers.
Tags :
AU Degree 6th Sem AU Degree 6th Sem 2019 Mathematics Previous Question Papers

Comments

Post a Comment

Links to non-related sites will be removed.

UG Papers App

Download our Official UG Papers app from PlayStore.

Get it on Google Play

Labels

  • AU Degree 1st Sem
  • AU Degree 2nd Sem
  • AU Degree 3rd Sem
  • AU Degree 4th Sem
  • AU Degree 5th Sem
  • AU Degree 6th Sem
  • Andhra University
  • Entrance Exams
  • Previous Question Papers
  • Universities

Featured Post

Andhra University | AU Old Question Papers

By Venkat |September 11, 2019

Andhra University was established in 1926 and C.R.Reddy is the founder of Andhra University. It offers various Under Graduate, Post Graduate and…

Popular Posts

Sri Krishnadevaraya University | SKU Previous Question Papers

Sri Krishnadevaraya University (SKU) was  established in the year 1981 in Anantapur. It was a Publi…

Dr. B.R Ambedkar University | BRAU Previous Question Papers

Ambedkar University (BRAU) was  established in the year 2008 in Srikakulam. It was a State Universi…

Au Degree 2nd Sem Previous Question Papers | Au 2nd Sem old Question Papers

Andhra University Degree 2nd Semester Previous year Question Papers of groups B.Sc and B.Com th…

AU Degree 6th Sem Previous Question Papers | AU 6th Sem Old Question Papers

Andhra University 6th Semester Question Papers of the last few years are available here for noth…

Au Degree 2nd Sem ICT (2021) Question Paper

Andhra Univesity Degree 2nd Semester Life Skills Course, Information and Communication Technology…

Au Degree 2nd Sem Physics (2021) Question Paper

Andhra Univesity Degree 2nd Semester Physics Question Paper of the year 2021 is below. Have a look …

AU Degree 2nd Sem Fundamentals of Accounting Question Paper

Andhra University Degree 2nd Semester Fundamentals of Accounting Question Papers of the last few…

Rayalaseema University | RU Previous Question Papers

Rayalaseema University (RU) was  established in the year 2008 in Kurnool. It was a State Universit…

AU Degree 5th Sem Previous Question Papers | AU 5th Sem old Question Papers

Some of the Andhra University 5th Semester Degree Question Papers are Collected by us. The Links …

AU Degree 2nd Sem Telugu (2021) Question Paper

Andhra University Degree 2nd Semester Telugu Question Paper of the year 2021 is available below. …

  • Contact Us
  • Privacy Policy
  • Terms of Use
  • Disclaimer
Copyright © Ugpapers